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Abstract—Many ubiquitous computing systems employ intelligent 

components that learn how to adapt the user's environment on 

their behalf, by observing how the user has adapted such 

environments in the past.  Such components employ monitoring 

and machine learning techniques to capture human behaviours 

and process them to extract adaptation rules (or user 

preferences).  However, learning preferences from observations 

of behaviour introduces challenges that are not so compounded 

in other machine learning problem domains.  One key issue is 

preparational behaviours (or pre-actions) which current 

preference learning solutions can struggle to handle.  This paper 

uses pre-actions as an example discussion point and raises the 

question of whether preference learning solutions should take 

advantage of temporal data from real-world environments to 

improve performance.  The key contribution of this paper  is the 

introduction and analysis of a novel machine learning technique 

(the DIANNE) that utilises temporal data to handle user 

behaviour anomalies such as pre-actions.  

Behaviour; Context; Learning; Personalisation; Preferences; 

Pervasive; Ubiquitous 

I.  INTRODUCTION 

The goal of creating ubiquitous/pervasive computing 
environments has been explored since the early 80's.  However, 
it is only in recent years that advances in technology have 
begun to impact on everyday environments, transforming them 
to reflect the integrated and technology rich environments such 
as those envisaged by Weiser [1].  For example, figures from 
Kantar Worldpanel ComTech [2] state that in February of 2012 
over half the UK population owned a smart phone, a device 
that is becoming increasingly powerful and integral to our 
everyday lives.  Additionally, with the continued rise of social 
networking, online gaming, movie downloads and internet 
television our homes are becoming ever more connected and 
technology rich.  Other trends include smart energy, the 
internet of things and smart spaces for assisted living, all of 
which aim to increase the integration of technology into our 
daily lives. 

The challenges of optimising such technology rich 
environments to meet the current needs of inhabitants have 
been considered in ubiquitous computing research for many 
years.  The result is that many current ubiquitous computing 
systems employ intelligent components that can learn how to 
autonomously and proactively adapt the user's environment on 
their behalf, by observing how the user has adapted such 
environments in the past.  This process is often referred to as 
personalisation.   

A key element of this process is the internal knowledge that 
accumulates over time via the learning mechanisms.  This 
knowledge dictates what proactive and autonomous behaviours 
should be performed to optimise an environment for an 
individual.  It can take many forms but a common format is a 
set of context-dependent rules, often referred to as user 
preferences. 

The typical approach adopted by many personalisation 
systems to learn user preferences is as follows: a behaviour 
monitoring element monitors user behaviour within the 
environment, storing it with current user context information to 
build up a training dataset.  Once enough training data is 
collected, machine learning algorithms are applied to extract 
user preferences indicating what behaviours the user performs 
in a given context.  An application element can then monitor 
the user's context in the future and apply the appropriate 
behaviour(s) as indicated in the preferences. 

However, the pre-emptive and cognitive abilities of the 
human users being monitored often means that the assumptions 
made in the process described above do not hold.  Essentially, 
there is not always a direct mapping between a behaviour and 
the context in which that behaviour is performed.  It has been 
observed that sometimes users perform behaviours in one 
context to prepare for entry into another context.  We have 
termed these preparational behaviours pre-actions and in this 
paper we describe how pre-actions can prove problematic for 
current preference learning solutions.  It is proposed that such 
solutions could benefit from the exploitation of temporal data 
from the user's real-world environment, as done by the 
DIANNE which is introduced in this paper as a novel 
preference learning solution.   

Section 2 gives a brief background to personalisation in 
ubiquitous environments describing how several other systems 
learn to proactively adapt environments based on the 
observation of past user behaviours.  Section 3 discusses pre-
actions in more detail and raises the question of whether 
temporal data could benefit preference learning solutions.  
Section 4 presents the key contribution of this paper - the 
Dynamic Incremental Associative Neural NEtwork 
(DIANNE). DIANNE is a neural network based preference 
learning algorithm that utilises temporal information to handle 
issues such as pre-actions and provide accurate user 
preferences.  Section 5 presents DIANNE performance results 
and a comparison with other algorithms.  Finally section 6 
concludes the paper. 



II. BACKGROUND 

Since 2000 the GAIA project [3] has been developing a 
middleware infrastructure for smart homes and offices which it 
terms active spaces.  The project adopts the typical approach to 
personalisation, as mentioned above.  A training dataset is 
created from monitored user behaviour and context information 
and preferences are extracted using a Naive Bayes technique.  
GAIA agents continuously monitor the user's context and use 
the learnt preferences to drive automatic and proactive 
adaptations of the user's home/office environment. 

The MavHome project [4] focuses on the learning and 
prediction of user tasks to drive adaptations within a home 
environment.  Behaviour monitoring is performed in a similar 
way to the GAIA project.  Then several machine learning 
techniques such as sequential pattern discovery and Markov 
chains are used to identify commonly occurring patterns of 
behaviour from the stores of monitored behaviour data.  An 
incremental prediction algorithm (Active-LeZi) [5] is used to 
predict future tasks in real-time (e.g. in a given context, when 
the user switches on the VCR, they then switch on the TV). 

The Adaptive Home (or Neural Network Home) project [6] 
constructed a prototype pervasive system in an actual residence 
in 1997.  It utilises reinforcement learning and neural network 
techniques to learn the intentions of inhabitants within the 
smart home environment.  The aim is to balance user 
requirements and energy conservation.  To achieve this the 
Adaptive Home goes a step beyond other projects by 
employing learning techniques to build models of future 
context states for future context prediction (e.g. future 
occupancy of an area or future hot water usage).  User 
behaviours are then analysed against predicted future context 
states to pro-actively adapt the home appropriately in terms of 
future user and energy requirements. 

The Synapse system [7] performs environment adaptations 
under two modes; active and passive.  Bayesian Networks are 
employed to learn preferences dictating the relationships 
between context states and service usage behaviour.  This 
learnt knowledge is then applied to personalise the user’s 
environment through service provision.  If a preference has a 
probability above some threshold, personalisation operates in 
active mode and the service is started automatically.  If the 
preference has a probability below some threshold, 
personalisation operates in passive mode and the top five 
potential services are presented to the user for manual 
selection.  This approach aims to minimise incorrect 
personalisation in uncertain situations while at the same time 
provide automation when appropriate. 

Bayesian networks were also used to learn and represent 
user preferences in the DAIDALOS project [8] however this 
project also employed several other preference learning 
techniques, the key one being Quinlan's C4.5 decision tree 
learning algorithm [9].  The main benefit with this technique 
over network based approaches is that decision tree output can 
be easily mapped into human understandable rules.  In 
DAIDALOS, an IF-THEN-ELSE format was used to store and 
present preferences. 

More recently, projects such as Ubisec [10], MobiLife [11], 
SPICE [12] and iDorm [13] have supplemented offline 
monitoring and user preference extraction processes in an 
attempt to provide systems that are more responsive to 

preference changes.  Real-time update mechanisms temporarily 
update the user's preference between learning executions if 
negative feedback is received due to incorrect personalised 
adaptations.   

The solutions above have several commonalities such as 
how they monitor user behaviour and user context to build their 
datasets for future preference/task extractions.  They all store 
the current context of the user with a monitored behaviour 
when the behaviour first occurs at one point in time.  No 
temporal data is gathered relating to the duration that the 
behaviour endured.  Section III illustrates how the above 
techniques may struggle to handle pre-actions and proposes 
that the use of temporal data could prove beneficial.   

III. PREPARATIONAL ACTIONS 

A pre-action is an action performed by the user in some 
context in preparation for entrance into a new context.  For 
example, consider the following scenario: 

 
A student is entering a lecture theatre. She mutes her 

mobile phone in the corridor outside the lecture theatre before 
entering.  Once the lecture is over, the student un-mutes her 
mobile phone just before she leaves the lecture theatre. 

   
In this short scenario the student performs two pre-actions; 

muting the phone before entering the lecture theatre and un-
muting the phone before leaving the lecture theatre.  Based on 
how the majority of personalisation systems handle behaviour 
and context data, the typical monitored dataset that would 
result from this scenario would include the instances: 

 
volume = mute, location = corridor 
volume = un-mute, location = lecture theatre 
 
Since the user could potentially repeat these behaviours 

every time they enter or exit the lecture theatre, these instances 
could be repeated multiple times throughout the monitored 
dataset.  Each time, the context that the user is in when they 
perform a behaviour is stored with that behaviour in the dataset 
since it is assumed that the context c in which the user exhibits 
some behaviour b is the context in which that behaviour is 
intended to endure and hence b should be directly associated to 
c.  When machine learning techniques are eventually applied to 
extract preferences from this dataset it will typically result in 
the learning of a preference such as: 

 
IF location = corridor 
THEN volume = mute 
ELSE IF location = lecture theatre 
THEN volume = un-mute 
 
This preference will then be used to drive future 

personalised adaptations.  However, this preference is not 
correct.  It is actually the opposite of what the user prefers.  In 
the lecture theatre scenario the user performed behaviour b in 
context c as preparation for entry into future context c' with the 
intention that b should endure in (and hence be associated to) 
c'.  The correct preference is actually: 

 
IF location = corridor 



THEN volume = un-mute 
ELSE IF location = lecture theatre 
THEN volume = mute 
 
Essentially, a repeated or consistent noise has entered into 

the dataset due to the pre-actions. 

A. A Temporal Solution 

One may question if additional sensing and inference could 
provide a solution.  With appropriate sensing and inference 
techniques the system could predict the user's future location 
(lecture theatre) for association with behaviours (muting the 
phone).  However, even with additional sensing and future 
context prediction it may still be the case that the user is 
performing actions to prepare for entry into contexts that are 
more than one step ahead.  Therefore this does not always 
resolve the issue and could still result in the incorrect 
association of context and behaviours. 

If we reconsider the lecture theatre scenario, the user mutes 
their mobile phone outside the lecture theatre and then 
immediately enters the lecture theatre.  Therefore, the "mute" 
state prevails for only a short time period in the context outside 
the lecture theatre, but prevails for a much longer time period 
in the context inside the lecture theatre.  The temporal duration 
of the co-occurring behaviour and context provides important 
information that naturally leads one to conclude that the mute 
state is more strongly associated to the context inside the 
lecture theatre where it prevailed for a greater temporal 
duration. 

Consider another scenario.  In some context c the user sets 
their screen background colour to blue.  This behaviour 
prevails for several minutes before the user sets their screen 
background colour to yellow.  This behaviour prevails for a 
number of weeks.  Note that the two behaviours only occur 
once in context c.  The natural assumption for one to make is 
that the second action should be more strongly associated to the 
context due to its longer duration but without this additional 
temporal information the dataset and the preference learning 
algorithm will treat both behaviours as equally associated to the 
context. 

Therefore, it is proposed that temporal data could prove 
beneficial to preference learning systems, enabling them to 
handle anomalies such as pre-actions.  Of course, one could 
always pose scenarios where the temporal information also 
introduces noise, for example if the user performs a behaviour 
and then gets distracted.  Any system which exploits temporal 
information for preference learning should consider this issue 
and ensure that such temporal noise is dealt with appropriately. 

Section IV introduces the key contribution of this paper -  
the DIANNE preference learning solution which is designed to 
take advantage of temporal data from the real-world 
environment. 

IV. THE DYNAMIC INCREMENTAL ASSOCIATIVE NEURAL 

NETWORK (DIANNE) 

The DIANNE [14] is a Dynamic Incremental Associative 
Neural NEtwork that learns associations between user context 
and user behaviours in an incremental, online manner.  To date, 
it has been used as a key preference learning solution in two 
EU projects: PERSIST [15] and SOCIETIES [16].  The 

DIANNE is essentially a single layer neural network (although 
for ease it is described in terms of two layers) with weighted 
connections between nodes as illustrated in Fig. 1. 

The context layer receives updates about the user's current 
context from some context provider.  It acts as a pseudo-
representation of the user's current context with the binary 
nodes in this layer being activated and deactivated to represent 
which context values are true or false at any time.  The 
behaviour layer receives updates about the user's current 
behaviours from the services that the user interacts with.  
Equally, it acts as a pseudo-representation of the user's current 
behaviours with the binary nodes in this layer being activated 
and deactivated to represent which behaviours are true or false 
at any time.  Nodes relating to the same context parameter or 
behaviour are grouped together and mutually exclusive policies 
are applied.  This ensures that conflicting context values or 
behaviour values cannot be true at the same time.  For 
example, in Fig. 1, if the "Kitchen" location node is true then 
the "Car" location node cannot also be true.  Equally if the 
"Low" volume node is true then the "High" volume node 
cannot also be true. 

 

 

Figure 1.  DIANNE Topology. 

Context node activations are entirely dependent on context 
updates from the real world.  Their input potential to the 
DIANNE is binary and directly dependent on their activation.  
Therefore when context node ci is active, it will provide an 
input potential of 1 and if ci is not active, it will provide an 
input potential of 0. 

Behaviour node activations are dependent on both 
behaviour updates from the real world as well as internal 
network knowledge.  Each behaviour node has an output 
potential value which indicates how strongly the DIANNE 
believes this node should be true in the current context.  The 
output potential of an outcome node is the sum of its inputs; 
therefore the output potential op() of behaviour node bj at time 
t is defined as: 
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where c
t
i is the input potential of context node ci at time t, 

w
t
ji is the weight value between behaviour node bj and context 

node ci at time t and   is the squashing function that maps the 

output potential from the possibly very large range of values to 
a finite range of values between -1 and +1.  The output 
potentials of all behaviour nodes in the same group are 
compared and in most cases, the node with the highest output 
potential will be made active in the group in a winner take all 
fashion.  However, it may be the case that contradictory 
behaviour updates are received from the real world.  For 
example, the DIANNE may believe that the volume should be 
set to "high" in this context however the user has just set the 
volume to "low".  When this occurs the DIANNE implements 
an online conflict resolution strategy to resolve the conflict in 
real-time.  The weights of the conflicting nodes are updated 
based on the Incremental Gradient Descent rule to promote the 
output potential of the user performed behaviour and demote 
the output potential of the DIANNE favoured behaviour. 

A. DIANNE Algorithm and Temporal Learning Policy 

The key elements of the DIANNE learning algorithm are 
illustrated in Fig. 2.  The algorithm is essentially a two step 
process comprising a layer update process and a learning 
process.  However, this two step algorithm is executed in a 
continuous loop with a frequency of one second.  Hence 
DIANNE learning occurs on a temporal basis enabling the 
DIANNE to exploit real-time information such as the temporal 
duration of user behaviours and context states.   

It implements a temporal weight reinforcement policy 
following the hypothesis that the time a behaviour endures in 
some context is just as important as the fact that the behaviour 
was observable in the context.  Therefore, in the DIANNE, the 
strength of the connections between context values and 
behaviours is not only based on the simultaneous occurrence of 
behaviours and context states but also the period of time that 
the simultaneous occurrence of behaviours and context states 
endures.  This enables the DIANNE to overcome noise in the 
observed user behaviours such as that resulting from pre-
actions. 

During the layer update process, any new context or 
behaviour updates that have happened since the last algorithm 
cycle are processed and the context and behaviour nodes are 
updated accordingly.  Then the Hebbian/anti-Hebbian 
Learning rule is applied to update all weights in the network 
depending on the activity of their connected context and 
behaviour nodes.  If both ci and bj are active then weight wji 
will be increased; if ci is active but bi is not active then wji will 
be decreased and if both ci and bj are inactive wji will remain 
the same.  Once all weights have been updated, the new output 
potentials of all behaviour nodes are calculated and the group 
nodes with the highest output potentials are identified.  If 
conflicts arise between network knowledge and the real world 
state they are dealt with at this point as described above. 

Reflecting back to the lecture theatre scenario, the 
DIANNE connection between the "lecture theatre" context 
value and the "mute" behaviour will be much stronger than the 
connection between the "lecture theatre" context value and the 
"unmute" behaviour since the weight on the first connection 
has been positively incremented for a longer time period. 

The use of two learning rules (Hebbian for temporal 
reinforcements and Incremental Gradient Descent for conflict 

resolution) is key to dealing with noise introduced by the 
temporal information itself (i.e. when the user gets distracted 
after performing some behaviour, hence the behaviour endures 
in a context for a longer time than it should).  If the user sets 
the volume of some service to "low" and then becomes 
distracted, the "low" node will be regularly reinforced in this 
context in line with the Hebbian rule.  When the user 
eventually changes the service volume to "high" this will create 
a conflict situation and the "high" and "low" node potentials 
will be more radically updated in line with the Incremental 
Gradient Descent rule.  The "high" node will be promoted and 
the "low" node will be demoted allowing the "high" node to 
compete with the "low" node without the "high" node having to 
endure for a comparable time in the context as the "low" node 
has.  

 

 

Figure 2.  DIANNE algorithm. 

V. PERFORMANCE RESULTS AND COMPARISIONS 

The DIANNE has been evaluated in two different ways.  
Firstly the DIANNE has been applied to benchmark datasets to 
determine performance and scalability as a machine learning 
solution.  Secondly the DIANNE has been applied in a real-
time preference learning situation to assess the benefits of 
exploiting temporal information in the preference learning 
process.  Both evaluations and their results are described 
below. 

A. Performance and Scalability Evaluation 

A total of five benchmark datasets were chosen for the 
performance and scalability evaluation, all of which were 
sourced from the UCI Machine Learning Repository [17].  The 
characteristics of the chosen datasets are summarised in Table 
1.  



TABLE I.  SUMMARY OF BENCHMARK DATASETS 

 

The datasets were randomly split into 70% training and 
30% testing subsets.  The training subset was presented to the 
DIANNE one instance at a time in line with the DIANNE's 
real-time behaviour.  Once all training data was presented the 
testing data was then also presented to the DIANNE one 
instance at a time and the DIANNE output was logged and 
compared against the instance's class value.  This process was 
repeated ten times to give ten percentage accuracies which 
were then averaged to give one overall percentage accuracy for 
each dataset. 

Fig. 3 presents the results of DIANNE performance on the 
benchmark datasets.  The figure also shows the performances 
of other well cited algorithms where comparable results (using 
the same training to testing proportions) were available for the 
same benchmark datasets. 

 

 

Figure 3.  Comparison graph illustrating the accuracies of various algorithms 
on the datasets. 

Notably, the DIANNE achieves accuracy figures that are as 
good as (and sometimes better than) the other algorithms over 
the various datasets.  Compared to batch algorithms, the 
DIANNE performs comparably with C45 and outperforms 
CN2, Simple Bayes and Assistant on the CANCER dataset.  
The Naive Bayes algorithm is outperformed on the HEART 
and VOTE datasets.  Compared to incremental algorithms, the 
DIANNE outperforms AQ15 on the CANCER dataset and 
achieves accuracies comparable to that of the STAGGER 
algorithm on the VOTE dataset. 

B. Temporal Learning Assessment 

To assess the benefits of exploiting temporal information in 
the preference learning process it was necessary to first create 
appropriate datasets.  This was due to the fact that no existing 
datasets with appropriate temporal information could be 
sourced.  To create such datasets a user trial was developed 
based on a personalised television experience.  A trial 
environment was created at Heriot-Watt University involving 
technology such as plasma screens, tablet devices and 
environmental sensors.  A total of 24 individuals participated in 
the trials.  Most participants were postgraduate students. 

Each participant was asked to make several visits to plasma 
screens placed in different locations around a University 
building.  At each screen the participant was asked to choose a 
channel to watch.  They were not given any directions on how 
they should make their choices and were free to watch 
channels, switch between channels and change their minds as 
they pleased.  Participants could also exhibit pre-actions as it 
was possible to select channels before entering the immediate 
vicinity of a screen. 

The behaviour and context of each participant was 
monitored and the temporal aspects of their behaviours and 
context was also captured.  This resulted in the creation of two 
datasets for each trial participant.  Dataset X contained no 
temporal information and is typical of the behaviour datasets 
captured by conventional personalisation systems (such as 
those mentioned in Section II).  Dataset X

T
 extended dataset X  

as it also contained temporal information about user behaviours 
and context (each instance in the dataset was replicated for 
every second that it remained true).  X

T
 is typical of the datasets 

expected by the DIANNE preference learning system.  The 
datasets were then used to answer two key questions: 

1. How does the performance of DIANNE (when applied 
to its expected temporal datasets) compare to the 
performance of a conventional preference learning 
solution (when applied to typical non-temporal 
datasets)? 

2. Does the performance of a conventional preference 
learning solution improve when applied to a temporal 
dataset? 

To answer question 1, for each participant, the DIANNE 
was applied to dataset X

T
 to give a performance value.  Another 

conventional machine learning algorithm, the C45 decision tree 
learning algorithm, was applied to dataset X to give a 
performance value. The C45 algorithm has been used as a key 
preference learning algorithm in the DAIDALOS and 
PERSIST projects.  To answer question 2, for each participant, 
the C45 algorithm was applied to dataset X

T
 to give a 

performance value.  Figure 2. shows the three performance 
values on the datasets over 24 trials. 



In relation to question  1, the graph shows that when 
applied to their typical datasets, the DIANNE is over three 
times more accurate than the C45 algorithm when learning the 
participant's viewing preferences.   

In relation to question 2, the graph shows that there is some 
improvement in the accuracy of the C45 algorithm on the 
temporal datasets (A) compared to the non-temporal datasets 
(B), suggesting that additional temporal information is of 
benefit to preference learning processes enabling more accurate 
preferences to be learnt.   

 

 

Figure 3.  Performance comparisons on temporal and non-temporal data 

VI. CONCLUSION 

As our everyday environments become increasingly 
connected and technology rich, it is important that ubiquitous 
computing research continues to provide supporting 
functionalities such as personalisation, to optimise such 
environments (and the technology within) in line with user 
needs.  A review of related work shows that ubiquitous systems 
often adopt a similar approach towards a personalisation 
solution.  Typically, user behaviour is monitored and stored 
with the context in which the behaviour was first exhibited.  
This store of behaviour and context data is then processed to 
extract adaptation rules (or preferences) that indicate how 
environments should be proactively adapted on behalf of the 
user in the future. 

No temporal data about the duration of behaviours is 
collected.  In some cases this omission can lead to incorrect 
preferences when the dataset contains anomalies such as pre-
actions, as illustrated in the lecture theatre scenario.  A pre-
action is where the user performs a behaviour in one context to 
prepare for entry to another context where they intend the 
behaviour to endure.   

It is proposed in this paper that temporal information about 
behaviours and context states should be exploited in preference 
learning processes as it enables them to better handle anomalies 
such as pre-actions and provide accurate preferences.  The 
DIANNE is introduced as a preference solution that does 
exploit temporal information about behaviours and context 
states.  It is essentially a single layer, feed forward neural 
network that processes inputs incrementally in real-time as they 
occur in the real world environment.  The DIANNE learning 

algorithm is a two step process that executes in a continuous 
loop with a frequency of one second.  Weight manipulations 
are performed on each execution allowing the DIANNE to 
enforce a temporal learning policy where connection strengths 
are dependent on the period of time that the simultaneous 
occurrence of behaviours and context states endures.  It follows 
the hypothesis that the time a behaviour endures in some 
context is just as important as the fact that the behaviour was 
observable in the context. 

The DIANNE has been analysed in a two part evaluation.  
Firstly, it has been applied to several benchmark datasets to 
evaluate performance and scalability as a machine learning 
algorithm.  The results show that the DIANNE performs 
comparably with other notable learning algorithms across all 
tested bench mark datasets.  Secondly, the DIANNE has been 
applied to a real-time preference learning challenge in live user 
trials where the goal was to learn the context-dependent 
viewing preferences of trial participants.  The results show that 
in these circumstances the DIANNE provides more accurate 
preferences than a more conventional preference learning 
approach.  Additionally, the more conventional preference 
learning approach has also been applied to a dataset that 
included temporal information about behaviours and context 
states.  The results show an improvement in performance 
suggesting that temporal information about behaviours and 
context states is a beneficial addition in preference learning 
solutions.  
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